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Simulations: A Tool for Studying Quantum 
Condensed Matter Systems 1 

D. J. Scalapino 2 

Quantum Monte Carlo techniques provide a new method for studying the 
properties of condensed matter systems. A review of this approach and the type 
of information which it can provide is given. 
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1. i N T R O D U C T I O N  

Over the years the Monte  Carlo technique described in the pioneering 
work of Metropolis et al. (1) has been widely used for a rich variety of 
problems in classical physics More recently, this techniqu@ 2 4) along with 
other stochastic methods (5) has become an important  new tool in the study 
of quantum condensed matter  systems. Here I will review the structure of 
these simulations using as an example an interacting spinless fermion 
model. However, before getting into details, it is useful to consider what 
types of questions simulations can help us explore. The following represents 
a short list of models which have been or are currently being studied using 
quantum Monte Carlo techniques. 

(1) Do 1-D metallic chains with polarizable side groups exhibit high tem- 
perature superconducting pair fluctuations (6) as originally suggested 
by Little? (7) If they do, then what regions of the parameter  space 
(one-electron overlap, Coulomb integrals, exciton frequency, band 
filling, etc.) are most favorable? If there is no pairing, what type of 
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correlations (e.g., charge density wave, spin density wave) are 
present? What happens in two dimensions? 

(2) A variety of adsorbed gas problems have been mapped onto 2-D 
Ising, or more generally, q state Potts models. What happens if the 
system consists of light atoms so that their quantum mechanical 
translational motion is important? ~ COC12 has been intercollated 
into graphite and forms a 2-D quantum XXZ model. What are its 
phase properties? (1~ 

(3) Can a nondegenerate Hubbard model with a repulsive U have a 
ferromagnetic phase or does it only exhibit antiferromagnetism? 
Under what conditions does it exhibit these phases? (11) Can it have a 
triplet superconducting phase? What are the properties of a 
degenerate Hubbard model? (12) 

(4) How does a quasi-l-D material, in which the coupling along one axis 
are much stronger than along the other axes, such as KCP or 
TTF-TCNQ,  order as the temperature is lowered? (13) What is the 
nature of the metal insulating transition? What effect do the various 
interaction strengths, the band fillings, or impurities have on the 
transition? These are just a few of the questions one might consider. 
Here at Los Alamos one should certainly add: Does a periodic Ander- 
son or Kondo lattice model exhibit a tendency toward triplet pairing 
or anisotropic s-wave pairing? 

There are clearly a wide variety of questions which could be asked, 
and I've selected these because I'm familiar with them. Nevertheless, they 
give a flavor of the type of correlations which are being explored with 
simulations. The goals of these simulations vary. On the most basic level 
one would like to know whether a given model contains the essential 
physical phenomena. Does Little's model have large superconducting fluc- 
tuations? Can a nondegenerate Hubbard model have a ferromagnetic phase 
or a triplet pairing phase? How does the order onset in quasi-l-D systems? 
If the phenomena is there, we may want to proceed to develop analytic 
approximations to explore it. If it does not appear in the simulation, we 
will be wary of approximations which give it, carefully looking at the 
simulation and the approximation to determine what is going on. Next we 
would like to use simulation to develop a feeling for the way in which the 
physical properties of a model depend upon the parameters in the model. 
In addition, as noted, simulations can be used to test the utility of various 
approximate techniques. Finally, one can proceed toward obtaining quan- 
titative numerical results if this is appropriate. 

In this overview I plan to focus on the nature of the calculations, 
reviewing the world-line (3) and exact determinant updating (a) methods we 
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have used. Illustrations of the way correlations can be studied will be given 
using the spinless fermion model. The conclusion addresses some additional 
technical questions that need to be answered in order to fully utilize 
simulation in the study of quantum condensed matter physics. 

2. Q U A N T U M  M O N T E  C A R L O  

In classical statistical mechanics the thermal equilibrium average of an 
observable A is given by 

( A ) = f ]-~ dx, P(x,) A(x,) (1) 
i 

with 

e - f l E ( x i )  

e(x,) = - -  (2) 
Z 

and 

Z =  f ]] dx i e -€ (3) 
i 

Metropolis et al. (~) proposed a Monte Carlo method which generated a set 
of M independent configurations {x~},, {x~}2,..., {X~}M distributed 
according to (2). According to this importance sampling algorithm one 
makes a change in the configuration {x;} and accepts this new con- 
figuration if 

e ~E(~)/e-~E(~')> r (4) 

where r is a random number distributed between 0 and 1. Typically, local 
changes are made, x i ~  x~+gxi,  and a number of sweeps through the 
entire lattice {x~} are necessary to make sure that an independent con- 
figuration is generated. This algorithm is one of many that satisfies detailed 
balance and generates configurations distributed according to (2). Once M 
configurations are generated 

1 ~, A({xi}n) (5) (A) = ~  
n = l  

with an error which falls a s  m -1/2, provided the system is in equilibrium 
and the configurations are independent. 



760 Sealapino 

For the quantum problem one is interested in calculating 

tr e - flH 
( A )  = (6) 

Z 

with 

Z = t r  e - ~ H = ~  (ah e-/~" 10~) (7) 
c~ 

Here the sum over I c~) represents a sum over a complete set of many-body 
states. Since H is an operator, we do not in general known how to evaluate 
(~le-~Hl~) and cannot proceed as directly as in the classical problem 
where one has e -aE(~') with E(x3 a known c number function of the state 
{x~}. In the quantum problem, one separates e -~H into L pieces 

Z =  ~ (CClle-~Tzclc~2)Kc~2le a ~ " l ~ 3 ) ' " f ~ L l e - ~ " l c q )  (8) 

with dz  = fl/L. This, in effect, introduces an extra dimension into the quan- 
tum problem. Then with d r  times the characteristic energies in H small one 
evaluates (ctil e ~'vlcg) by separating H into parts H~ + H2 which can be 
individually determined 

<ccile-~t"'+"2)lcej> ~ (c~i[e-A~ml~k)(Cck[e-~Ihlog) + O(Jz 2) (9) 
CCk 

This separation of H can be into kinetic and potential energy pieces or into 
parts involving separate pieces of the lattice. This latter separation is useful 
for quantum spin models, many-boson systems, and certain 1-D fermion 
problems where the matrix elements are positive and can be directly 
evaluated. However, for fermion problems in higher dimensions, sign 
problems arising from the Pauli principle lead to severe difficulties with 
procedures which attempt a direct sum over fermion configurations. In 
these cases, one integrates out the fermion degrees of freedom leaving a 
determinantal weight involving a Hubbard-Stratonovich or possibly a 
phonon field. Here we will illustrate these two techniques in order to see 
what is involved in carrying out a quantum Monte Carlo simulation. 

3. THE W O R L D  LINE M E T H O D  

Consider a 1-D spinless fermion model 

n :  ~a - t ( c L  1Cl + c• cl+ 1 ) q- Vnl+ 1 n: (10) 
l 
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For this system, it is convenient to separate H into pieces involving dif- 
ferent lattice sites 

Hi = E -t(r162 Cl+l) + Vni+ln, 
/(odd) 

H2 = ~ -t(c~+lct+c[ ct+l)+ Vn/+lnl 
/(even) 

(11) 

Then, once H1 and //2 are separated as shown in (11), the evaluation of 
(ail e -~m~ Jak) and (akJ e - ~ m  ]aj) involves only the solution of a two-site 
problem. 

The sum over the set of states {at} used in calculating Z, (8) and (9) 
can be viewed as a sum over generalized configurations. Figure 1 shows 
one such configuration for an eight-site system. Here each state at is 
specified by occupation numbers, and we have connected the occupied sites 
world-lines. The shaded areas correspond to regions in which HA or H2 
operate. This checkerboard breakup was used by Barma and Shastry (14) to 
map 1-D quantum problems onto 2-D classical statistical mechanics 
problems. In reference 3 we discussed how the checkerboard breakup could 
be used to cary out Monte Carlo calculations on 1-D fermion systems and 
quantum spin problems in any dimension. The Monte Carlo procedure 
parallels the classical method. Starting from an initial configuration {at}, a 

I 2 3 4 5 6 7 8 I 
n 

Fig. l, A quantum field configuration. Fermions can hop and interact in the shaded squares. 
The dashed line indicates a possible local move generating a new configuration. 
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S i m u l a t i o n s :  A T o o l  f o r  S t u d y i n g  Q u a n t u m  C o n d e n s e d  M a t t e r  S y s t e m s  7 6 3  
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Fig. 3. Equal time density~tensity correlation functions versus site separation for (a) 
V =  1.5, (b) V =  2.5. Here/3 = 4. 
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to bandwidth of kT/4= 1/18. In these figures, a 1 means that a site is 
occupied, and a blank means that it is empty. Comparing Fig. 2(a) with 
2(b), one can clearly see the effect of V in establishing low temperature 
charge density correlations. A quantitative measure of this can be obtained 
by calculating the equal time density-density correlation function 
(rti+lrti), Fig. 3. From the relationship between the spinless fermion model 
and the Heisenberg XXZ model provided by the Jordan-Wigner transfor- 
mation, we know that for V> 2 there is long-range charge density order in 
the ground state. Furthermore, for V<2, the charge density correlations 
decay as l -~ with r/= 1 at V= 2. This type of behavior is clearly seen. 

Recently this method has been applied to a 3-D array of chains 
coupled by interchain Coulomb interactions. ~j3) Orienting the chains along 
the x axis, the transverse coupling has the form Vynl +ynl + Vznl + enl. Note 
that there is no electron transfer between chains and so there are no fer- 
mion sign problems, and the world-line method can be used. The 
simulation was carried out on a STAR Technologies ST-100 array 
processor which updated 250,000 sites per second. Figure 4 shows results 
for the specific heat per site of a 10 • 10 array of chains, each containing 

.4 

.3 

.2 

~q 

.i 

t t [ J L t t [ i t i t i i t L t i t t L t [ i ~ 

: ~  LatJice=30x :10x 10 _~ 

l , ] , , , 1 1 1 , 1 , 1 1 , q , 1 , 1 , , ] ,  i] 
.5 1 1.5 2 2.5 

TemperaLure 

Fig. 4. Specific hea t  per  site versus T for a 30 • 30 • 10 lat t ice wi th  Vx = 2 and  Vy = Vz = 0.2. 
The solid curve in the B o n n e ~ F i s h e r  115) result  for a single cha in  ex t rapo la ted  from finite cha in  
calculat ions.  
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30sites. Here Vx=2 and Vy= Vz=0.2, corresponding to a quasi-l-D 
Boner-Fisher N ~ system. The solid line in Fig. 4 represents the - ~5) 

extrapolation of the specific heat per site for a single chain. As expected, the 
specific heat of the weakly coupled array initially follows the single chain 
result until the correlations along the chain become sufficiently long range 
so that the weak interchain coupling locks the charge density waves on the 
different chains producing a phase transition at T =  0.44_+ 0.02. 

Figure 5 shows the temperature dependence of the structure factor 

1 S(q) = ~  ~. e ' " t<n , . t n ,>  (15) 

for q = (~r, g, g) and the onset of order at To is clearly evident. At higher 
temperature S(q) first develops a ridge at qx= 2pF= ~ and only as To is 
approached does the Bragg peak at q =  (~, ~, ~) develop. The ridge at 
qx = 2pF corresponds to the diffuse X ray lines observed above Tc in studies 
of quasi-l-D electron systems. An analysis of the scaling behavior of 
S(~, ~, ~) near Tc gives 7 = 1.25 consistent with the expected 3-D Ising 
behavior. A variety of additional correlations as determined for various 
coupling parameters, providing detailed information about the develop- 
ment of correlations in quasi-l-D materials. We believe that this work 
indicates the type of simulations that will ultimately be carried out on 
interacting fermions with full 3-D motion. 

,,,il,lll,l,ll,,lllll ll  
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Fig. 5. S(~, ~, ~) versus T for the same interaction parameters as in Fig. 4. 
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4. D E T E R M I N A N T A L  M E T H O D  

When fermions can move around each other, sign problems arise that 
severely limit simulations which attempt to numerically sum over specific 
fermion field configurations. In these cases, one can introduce a Hubbard-  
Stratonovich field to reduce the fermion problem to an effective single par- 
ticle problem and formally integrate out the fermion degrees of freedom. 
For fermions, it is possible to use a discrete Hubbard-Stratonovich trans- 
formation introduced by Hirsch (~6) 

e-~r i/2)(,j-1/2)=�89 e ar ~ e-Jr162 (16) 
S i j  = , + i  

with cos h(A~l)= e ~/2. In this case, for the spinless fermion model 

Z =  ~ t re  ~Hr ~ I ~ l  (17) 
{su(~t) = _+1 } 

with 

ffI = ~ [ - t(c+ cj + h.c.) + JSo.(v)(n i -  nj)] 
(ij) 

=~ ~ c+ h~j(~)cj (18) 
(u) 

and the problem is reduced to noninteracting fermions moving in a space- 
imaginary-time potential JSu(r ). Here i and j are near-neighbor sites. 

Formally tracing the fermions out 

with B = B L ' "  B1 and 

Z= ~ det(1 +B) (19) 
{sr 

B = e ~h(~) (20) 

Here h is the matrix given by (18). In this formulation, a configuration con- 
sists of a set of space-time link variables {Sij(rl) = _+1 }. In a Monte Carlo 
(heat-bath) algorithm, a change {S} ~ {S'} [e.g., $23(r2) ~ -S23(%)] is 
proposed and accepted with probability 

P =  1/(1 + R )  (21) 

where 

det[1 + B(S')] 
R =  det[1 +B(S) ]  (22) 
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Fig. 6. (a) The peak in the structure factor S(n, n) for a 2-D spinless fermion q u an tu m lat- 
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The difficulty is, of course, the computational time it takes to evaluate 
this ratio. At present, various simulations have been carried out using an 
exact updating procedure described in Ref. 4. However, the computation 
time for this method scales as the square of the number of spatial sites 
times the total number of space-time sites and hence cannot be used on 
large 3-D systems. Hirsch (1~) has used this approach to study the 2- and 
3-D Hubbard model going up to 63 sites in 3-D. It has also been used !9) to 
study the 2-D spinless (or spin-polarized) fermion model on spatial lattices 
up to 12x12. 

The 2-D fermion Hamiltonian 

U O 

(23) 

with (ij) near-neighbor pairs represents a quantum generalization of the 
classical Ising lattice gas. In the strong coupling V/t ,> 1 limit, it goes over 
to the Ising model with an order~tisorder phase transition at 
sinh(V/2kTo) = 1. In the weak coupling V/t < 1 limit, the quantum nature 
of the system becomes important. As the temperature is lowered, the struc- 
ture factor S(q) develops a Bragg peak below Tc at q = (re, re), which signals 
the formation of a CDW phase. Figure 6(a) shows S(rc, re) versus T for 
three different L x L  sized lattices, and Fig. 6(b) shows scaled results. 
According to finite size scaling, L-7/4S(~, TO) should be a universal function 
of L(fl - tic.). Here we have used 2-D Ising indices since we are dealing with 
a scalar-order parameter in 2-D. In this way a critical temperature 
Tc = 0.4 + 0.05 was determined. Thus, by making use of finite size techni- 
ques it is possible to obtain useful information from lattices which can be 
simulated in a reasonable time. Naturally, for weak coupling when To is 
small, one needs to go to larger sized lattices, and the simulation becomes 
more difficult. In this case, it may be possible to use the simulation to 
obtain information on the short-distance, high-frequency part of the 
interaction and treat the long wavelength low frequency character 
analytically. (8) This type of hybrid approach needs further study, as dis- 
cussed in the conclusion. 

5. C O N C L U S I O N  

Various stochastic methods for numerically evaluating correlations in 
interacting many-body systems are available. With the continued advances 
in algorithms and computers, numerical simulation provides a new tool for 
both qualitative and quantitative studies. It provides a natural approach to 
problems in which band structure and particle interactions must be treated 
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on an equal footing. It has already been used to provide some answers to 
each of the questions raised in the Introduction. However, rather than 
review more of what has been done, it seems appropriate to conclude with 
a partial list of what needs to be done to more fully utilize this new tool. 

First, as everyone knows, a more efficient algorithm for treating 
fermions 3 is needed. We need a method in which the time for a sweep scales 
as the space-time volume of the lattice. Here various new ideas ranging 
from pseudo-fermion methods (~7) to Langevin techniques (18) are under 
study. 

In addition, one will need to devise efficient renormalization 
procedures for treating different space-time scales. For eample, in many- 
electron systems which have second-order charge-density, spin-density, 
ferromagnetic or pairing transitions one is faced with an instability in the 
particle-hole or two-particle channel. This instability is a low-frequency, 
long-wavelength property, and its simulation may well require prohibitively 
large space-time lattices. However, the effective interaction and the single 
particle propagator may depend on a range of space-time scales that can be 
reached with a reasonably sized space-time lattice. This suggests that it 
would be useful to develop procedures for extracting information on the 
effective interaction and the single particle self-energy from simulations, 
and then use these, like Landau parameters, to proceed with analytic 
calculations of the properties of the particle-hole and particle-particle 
responses. 

We also need more insight into methods for simulating real frequency 
response properties. When the simulations are carried out in imaginary 
time, one can of course compute the frequency response at the Matsubara 
frequencies ico,. However, it is extremely delicate to analytically continue 
numerical data, particularly noisy numerical data. Various methods rang- 
ing from Pade extrapolations (~9) and positive-definite spectral weight 
evaluations (2~ to a direct simulation procedure (21) have been proposed. 
However, this remains a difficult and important problem. Finally, there is 
the problem of interacting quantum systems far from equilibrium. That 
remains a special challenge. 
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